PAVINGEXPO

Alternativas de PAVIMENTAÇÃO

Seus desdobramentos ambientais e orçamentários

Empresa Responsável:

PGE Construções LTDA CNPJ: 04.811.383/0001-39

Equipe Responsável pelo estudo:

Deividi da Silva Pereira | Professor/UFSM Silvio Lisboa Schuster | Professor/UFSM Cléber Faccin | Dr. em Engenharia Civil Luciano Pivoto Specht | Professor/UFSM Gustavo Lau | Eng. Civil/PGE

Roteiro para a conversa de hoje

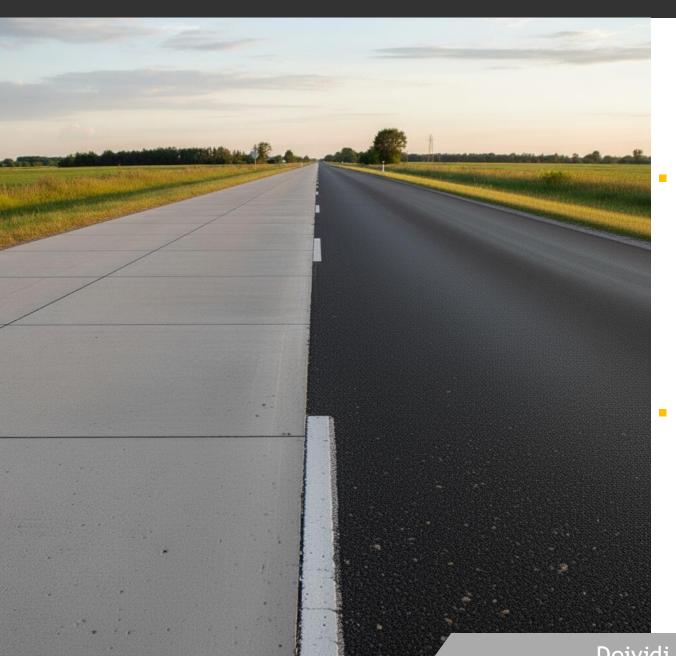
Contextualização

A conjuntura internacional do preço do petróleo e do dólar trouxeram a elevação significativa do custo do CAP - Cimento Asfáltico de Petróleo

A elevação do custo do Cimento Portland não foi tão acentuada quanto a do CAP

Busca legítima de entes privados e públicos por opções de pavimentação mais econômicas ... <u>sem esquecer o desempenho e a eficiência dos pavimentos</u>

Dúvidas.....


Qual a alternativa de pavimento é mais atrativa?

Sustentabilidade (ambiental)....emissões de Gases do Efeito Estufa (GEE)?

Custos de implantação?

Esta atratividade é função do tráfego?

Necessidade de estudo técnico-científico abrangente para melhor estudar os quesitos ambientais e orçamentários das distintas alternativas de pavimentação

Objetivos para hoje

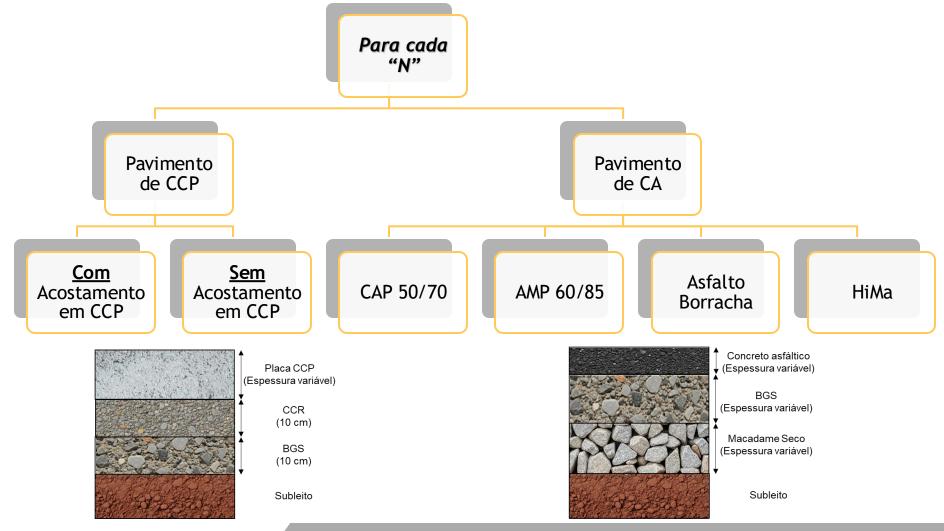
 Avaliar as emissões de CO₂eq para a implantação das diferentes alternativas de pavimentos (CCP e CA)

 Apresentar alguns aspectos relativos aos custos de implantação

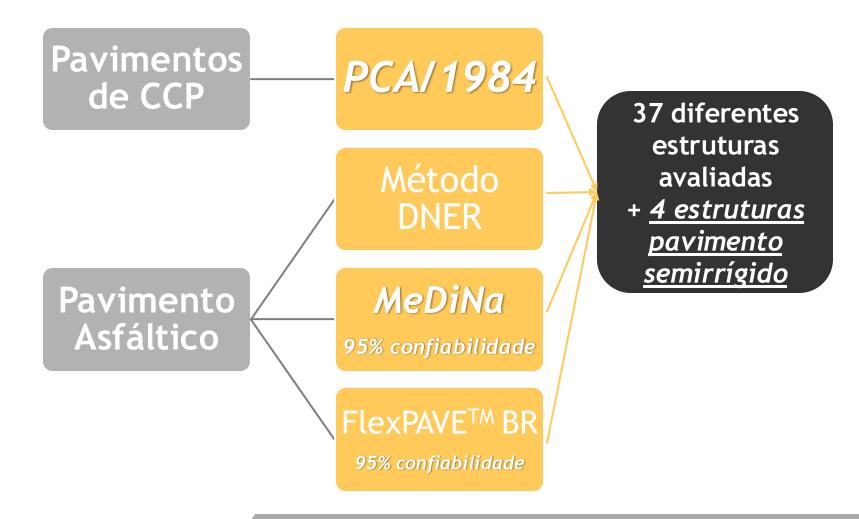
Relatório Técnico Nº 01/2025

Análises Orçamentárias e de Emissões de Carbono na Implantação de Pavimentos Asfálticos e de Concreto de Cimento Portland

		TRATAN DA / GRE	
	Deividi da Silva	Pereira	Professor/UFSM
	Silvio Lisbôa Sc	huster	Professor/UFSM
Equipe de Trabalho:	Cléber Faccin		Dr. Engenharia Civil
ттабашо.	Luciano Pivoto	Specht	Professor/UFSM
	Gustavo Lau		Eng. Civil / PGE
Data final do Relat	ório: 15/08/2025	Revisac	lo em: 08/09/2025
Contatos: Fone: (5:	5) 3254-1526 / Email: pgeco	nstrucoes@h	otmail.com

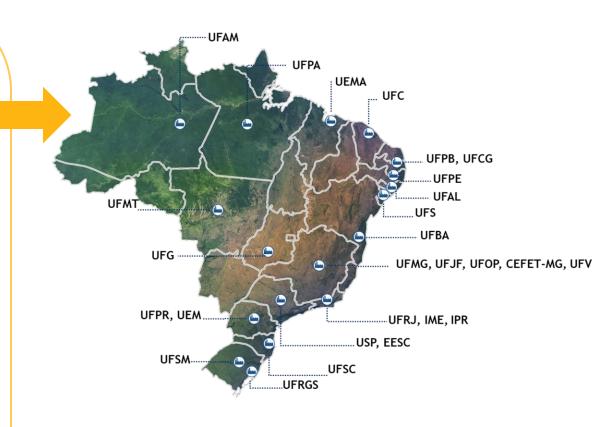

Análises Orçamentárias e de Emissões de Carbono na Implantação de Pavimentos Asfálticos e de Concreto de Cimento Portland

Etapas do Estudo



Alternativas de pavimentação avaliadas

Métodos de Dimensionamento utilizados

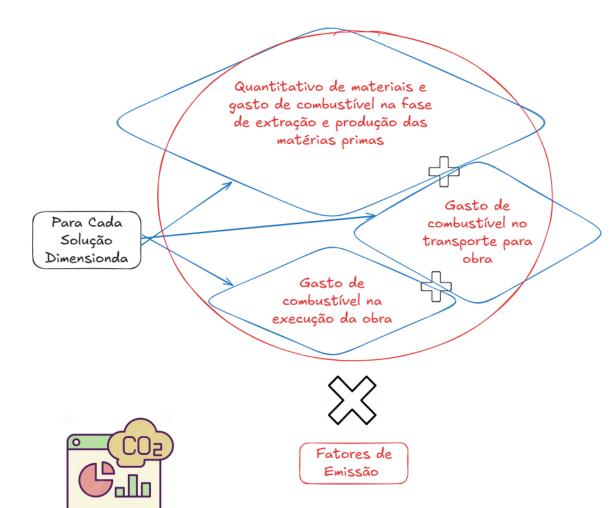

Métodos de Dimensionamento utilizados

Pavimentos Asfálticos

- Rede Temática de P&D em Asfaltos iniciou o desenvolvimento do MeDiNa
- Atualmente, o DNIT assumiu o protagonismo
 - TED's para ampliar os segmentos monitorados e calibrar os modelos de fissuração por fadiga
- Dimensionamento: confiabilidade e calibração

Pavimentos de CCP

- Ficou estacionado nos anos 1980
- Pautado em análises de materiais e condições dos EUA
- Impossibilidade de associação da confiabilidade no dimensionamento
- DNIT/IPR estão atentos TED com a USP


+ parcerias internacionais

Análises das emissões de CO₂eq

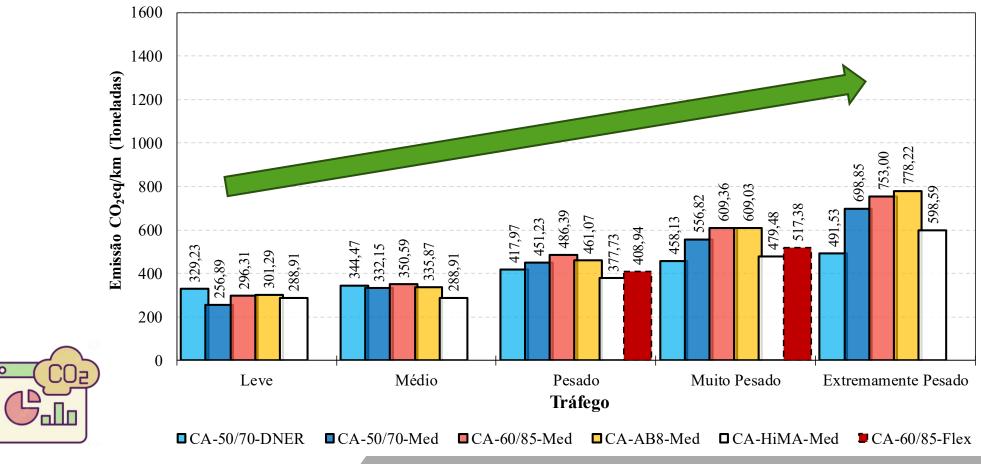
Es	A1-A3 stágio d	le		-A5 gio de			B1-B7		=			C4		
	roduçã			rução		EST	ágio de	USO			Estági	o Fina		D
A1	A2	A3	Α4	A5	B1	B2	B3	B4ª	B5	C1	C2	C3	C4	
Extração da Matéria Prima	Transporte para Usina	Produção do Material	Transporte para Obra	Execução do Pavimento	Uso	Manutenção (incl. produção, transporte e descarte de material	Reparos (incl. produção, transporte e descarte de material	Substituição (incl. produção, transporte e descarte de material	Reforma (incl. produção, transporte e descarte de material	Demolição	Transporte para descarte ou processamento	Processamento do descarte	Disposição do descarte	Potenciais benefícios líquidos da reutilização, reciclagem e/ou recuperação de energia além dos limites do sistema
					В6	Uso op	eracion	al de en	ergia					

^{*(}B4) não aplicável ao nível do produto

Análises das emissões de CO₂eq

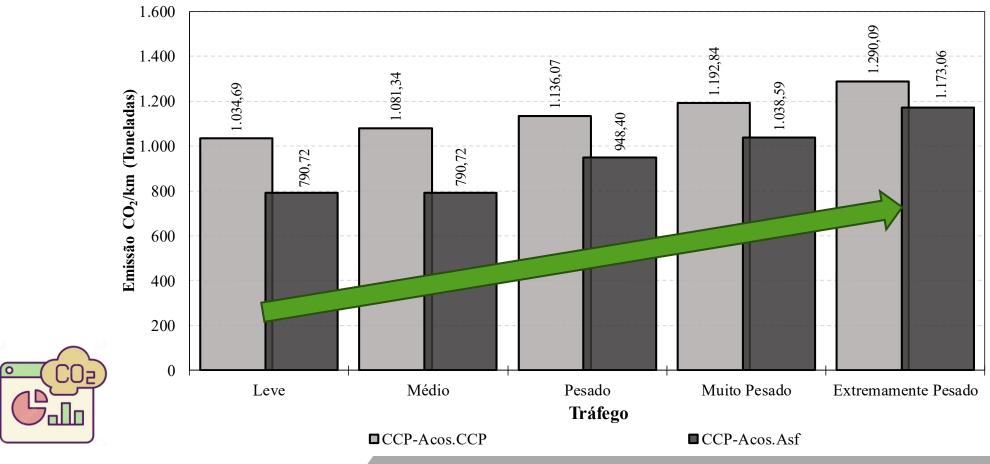
Critérios adotados

- Cálculo de emissões foi possível a partir do SICRO;
- O SICRO fornece mais do que apenas custos, incluindo dados técnicos como a produção da equipe, consumo de materiais, e potência dos equipamentos e seus consumos;
- Utilização do método de decomposição das composições de custo unitário:
 - Método também utilizado por Teles et al (2024)
- Emissões encontradas em referências bibliográficas consolidadas

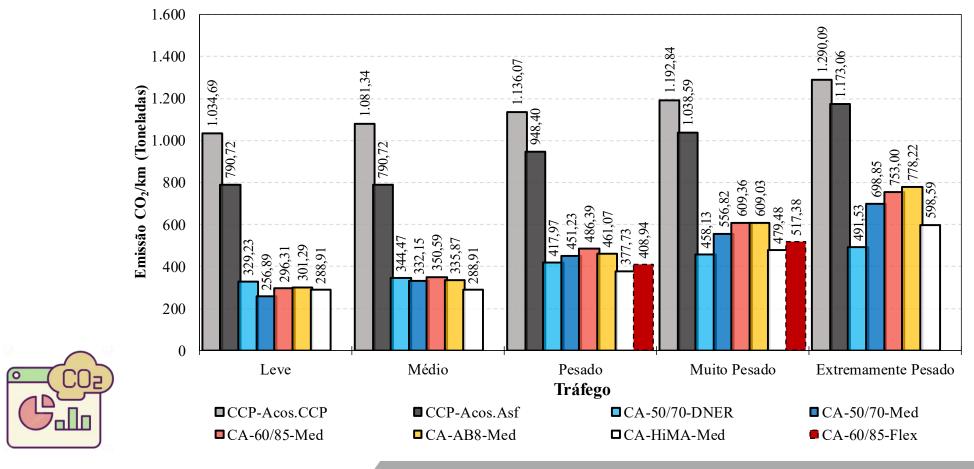

Análises orçamentárias

Critérios adotados

- Implantação de 1km de extensão (com pista de 7,20 m de largura total e 5,0 m de largura total de acostamento);
- Apenas custo da superestrutura (sub-base, base e revestimento + sinalização)
- SICRO/Paraná (Data-Base: Jan/2025);
- Consumos (inclusive CAP e Cimento Portland) pautados nos valores de misturas reais;
- Preços dos ligantes asfálticos: Paraná Tabela ANP (Portaria DNIT nº 1.977/2017); e orçamentos (HiMA);
- BDI Obra de médio porte;
- BDI diferenciado ligantes asfálticos;
- DMT's iguais para todas as soluções


Pavimentos Asfálticos

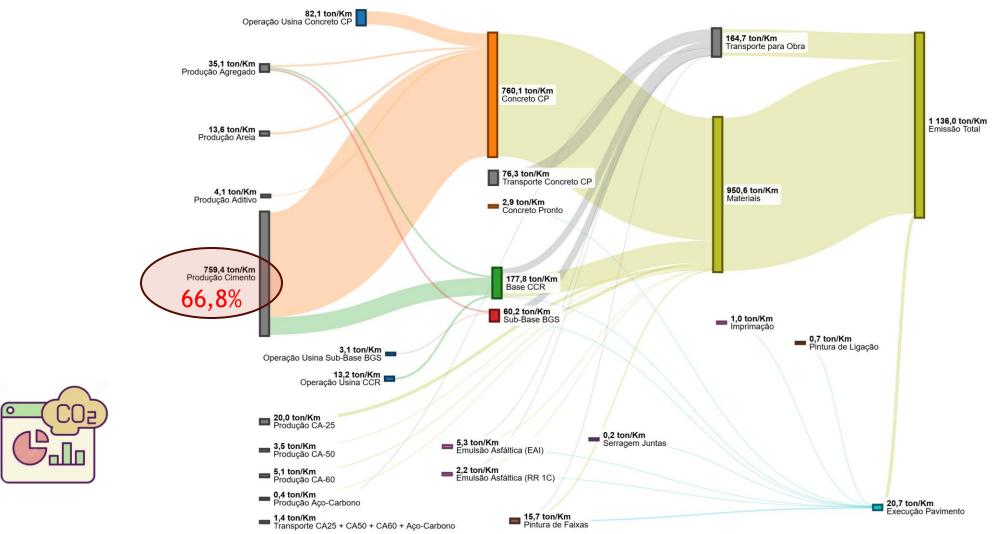
Estimativas dos valores de emissão de CO₂eq das estruturas em pavimento asfáltico


Pavimentos Rígidos

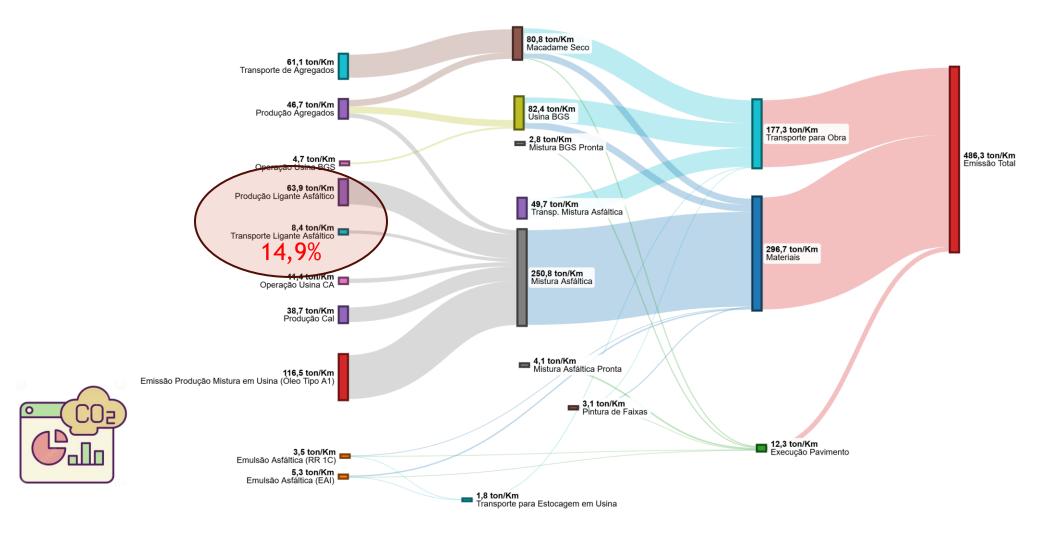
Estimativas dos valores de emissão de CO₂eq das estruturas em pavimento rígido

Pavimentos Asfálticos vs. Pavimentos Rígidos

Estimativas dos valores de emissão de CO₂eq das estruturas em pavimento rígido


Pavimentos Asfálticos vs. Pavimentos Rígidos

Síntese das diferenças percentuais de emissão de CO₂eq em *relação aos pavimentos rígidos com acostamento em concreto de cimento Portland*


N_{USACE}	CA-50/70-DNER	CA-50/70-Med	CA-60/85-Med	CA-AB8-Med	CA-HiMA-Med	CA-60/85-Flex
Leve	-68,18%	-75,17%	-71,36%	-70,88%	-72,08%	-
Médio	-68,14%	-69,28%	-67,58%	-68,94%	-73,28%	-
Pesado	-	-	-57,19%	-59,41%	-66,75%	-64,00%
Muito Pesado	-	-	-48,91%	-48,94%	-59,80%	-56,62%
Extremamente Pesado	-	-	-41,63%	-39,68%	-53,60%	-

Avaliações complementares - Impacto de materiais e serviços CCP Acos CCP - <u>Tráfego Pesado</u>

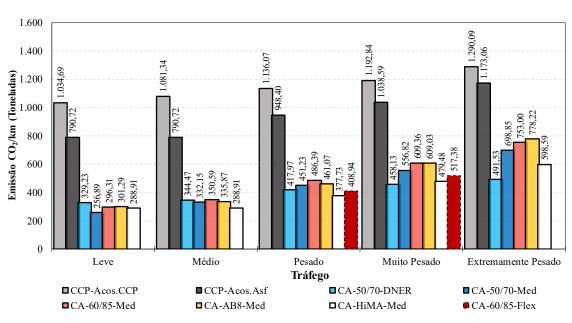
Avaliações complementares - Impacto de materiais e serviços AMP 60/85 - *Tráfego Pesado*

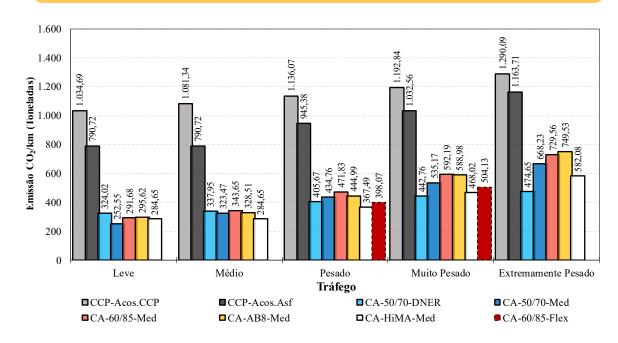
Análise de sensibilidade

- Fator de emissão de CO₂eq do ligante (Petrobras, 2025)¹
 - CAP 50/70 de <u>264</u> kgCO₂eq /t
 - Valores menores, função:
 - Linhas de produção de petróleo no Brasil são menos emissivas
 - Matriz energética mais limpa
 - Maior número de produtos nas refinarias da Petrobras
 - Valor empregado originalmente: 369,05 kgCO₂eq / t

¹Apresentação da Dra. Montserrat Motas Carbonell no evento online "27° Encontro do Asfalto" do Instituto Brasileiro do Petróleo (IBP) no dia 07/08/25 (https://www.youtube.com/watch?v=_tiLsFLhI0M).

Análise de sensibilidade

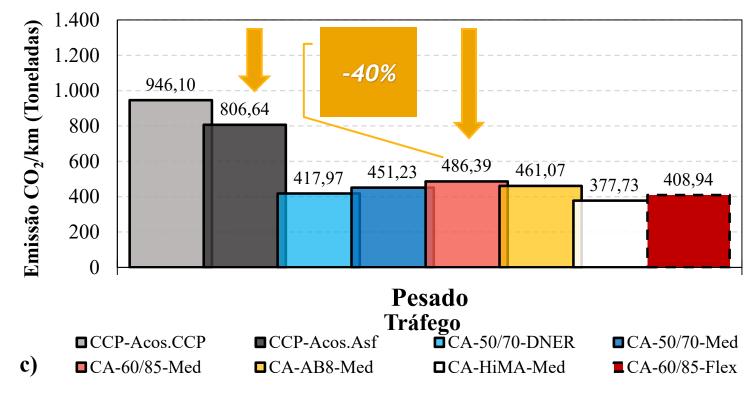

- Fator de emissão de CO₂eq do ligante (Petrobras 2025)
 - CAP 50/70 de 264 kgCO₂eq /t
 - Valor empregado originalmente: 369,05 kgCO₂eq /t
- Em função do valor para CAP 50/70 estimou-se os demais ligantes modificados
 - 389,9 kgCO_{2eq}/t para AMP 60/85; originalmente 494,95 kgCO₂eq / t
 - 293,74 kgCO_{2eq}/t para AB-08; originalmente 398,79 kgCO₂eq / t


515,8 kgCO_{2eq}/t para HiMA; originalmente 620,85 kgCO₂eq / t

Análise de sensibilidade

Fator de emissão para ligantes de literatura

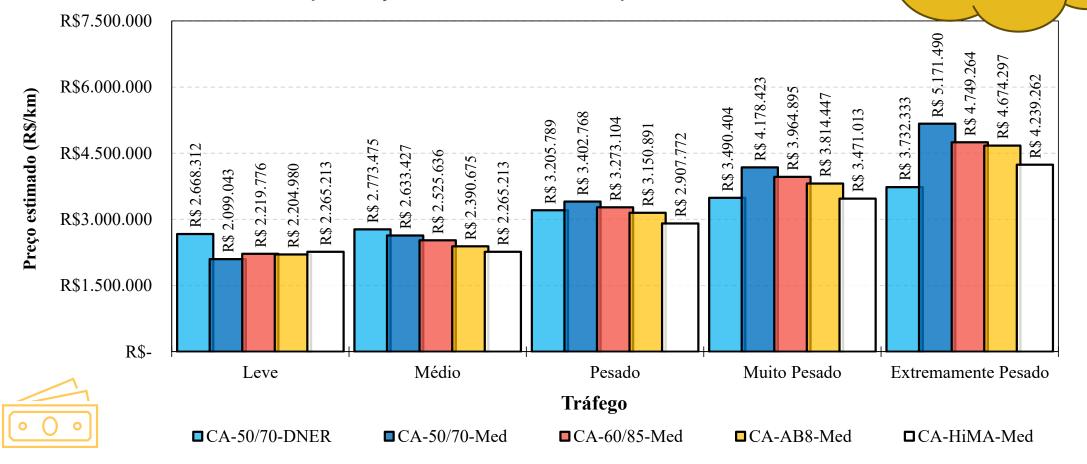
Fator de emissão Petrobras 2025



Análise de sensibilidade

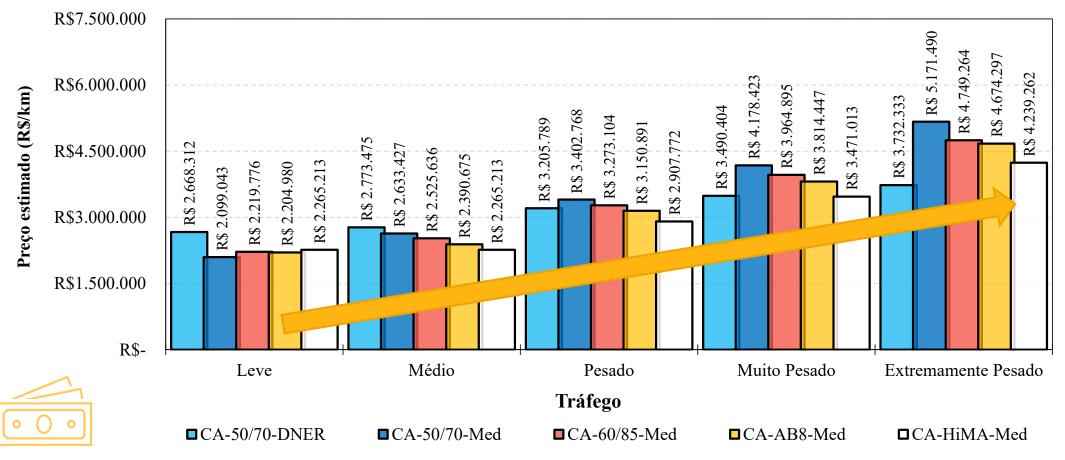
- Fator de emissão de CO₂eq do ligante (ABCP, 2024)¹
 - Cimento Portland de 564
 kgCO₂eq /t
 - Valor empregado originalmente:
 752,34 kgCO₂eq /t

Fator de emissão para CAP da literatura e da ABCP para o Cimento Portland

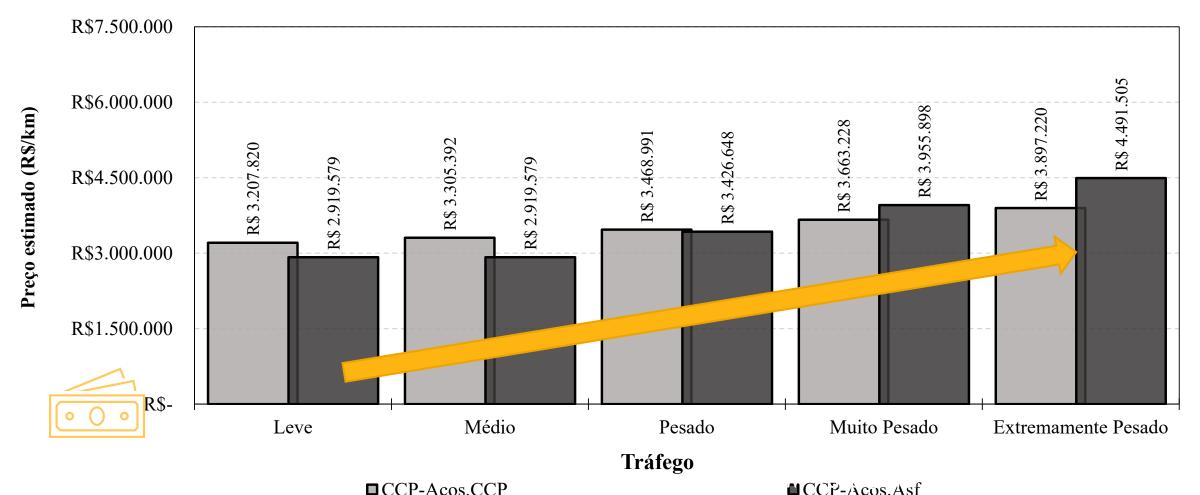


¹A partir de matéria veiculada no dia 15/04/2025 no site da ABCP que traz o valor do fator de emissão atual do cimento no Bras il de 564 kgCO2/t de cimento produzido

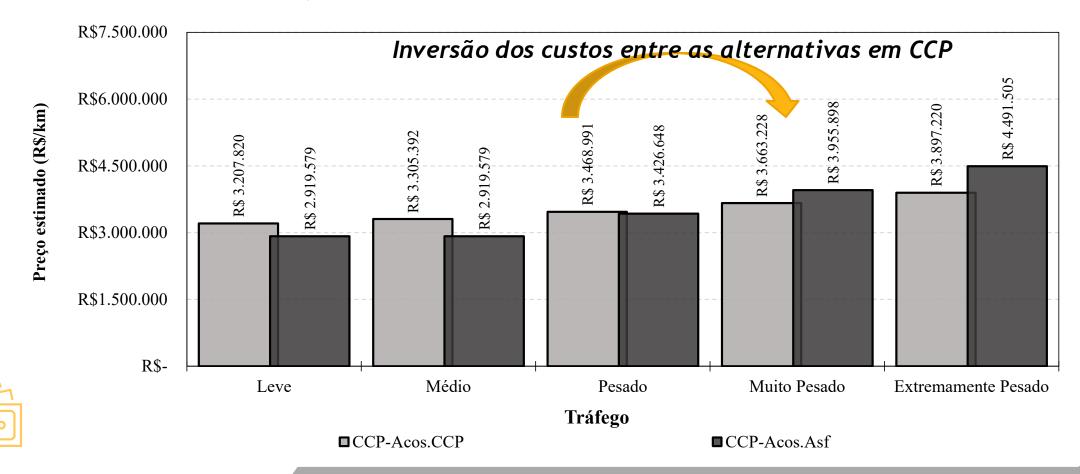
Pavimentos Asfálticos

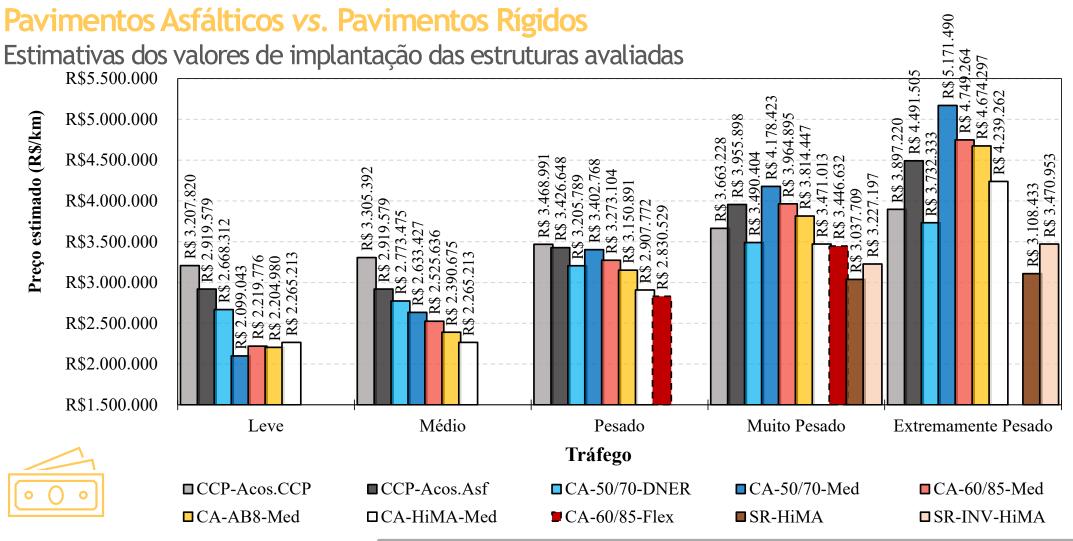

Estimativas dos valores de implantação das estruturas em pavimento asfáltico

Lembrando que sustentabilidade é um conceito amplo

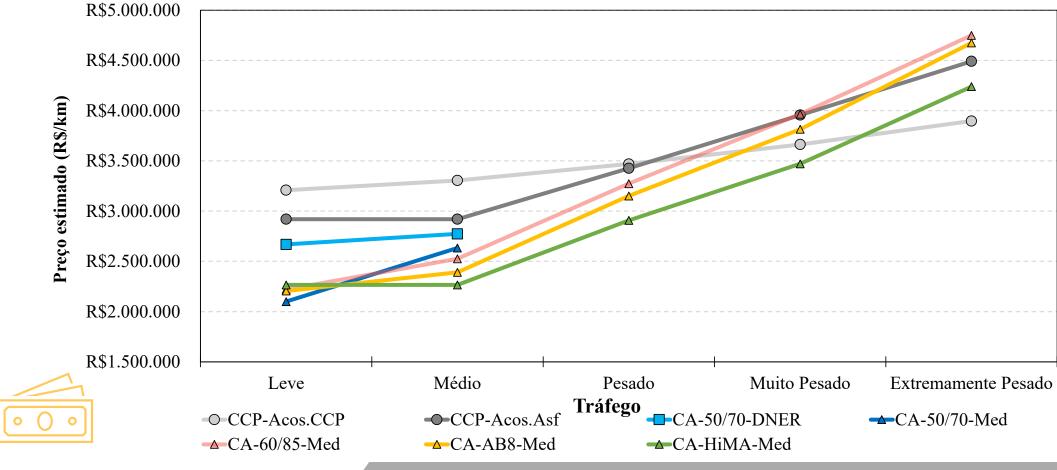

Pavimentos Asfálticos

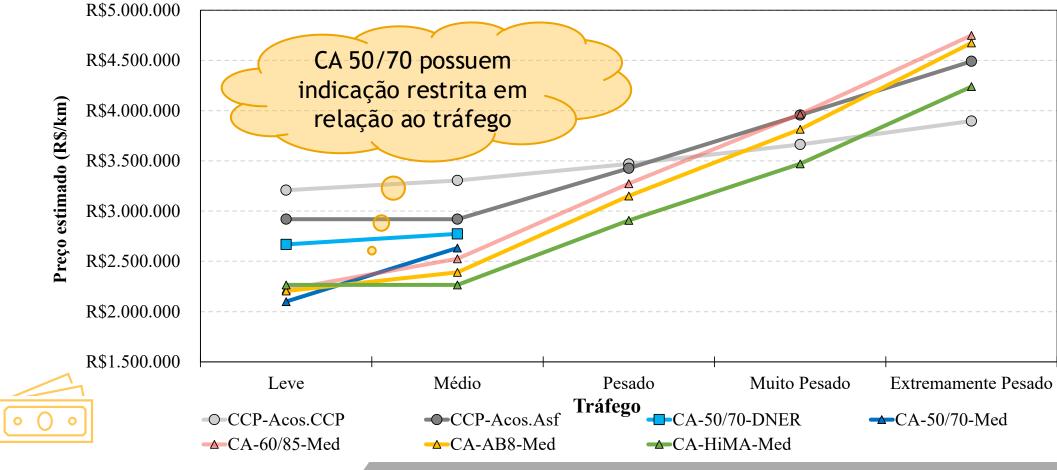
Estimativas dos valores de implantação das estruturas em pavimento asfáltico


Pavimentos Rígidos

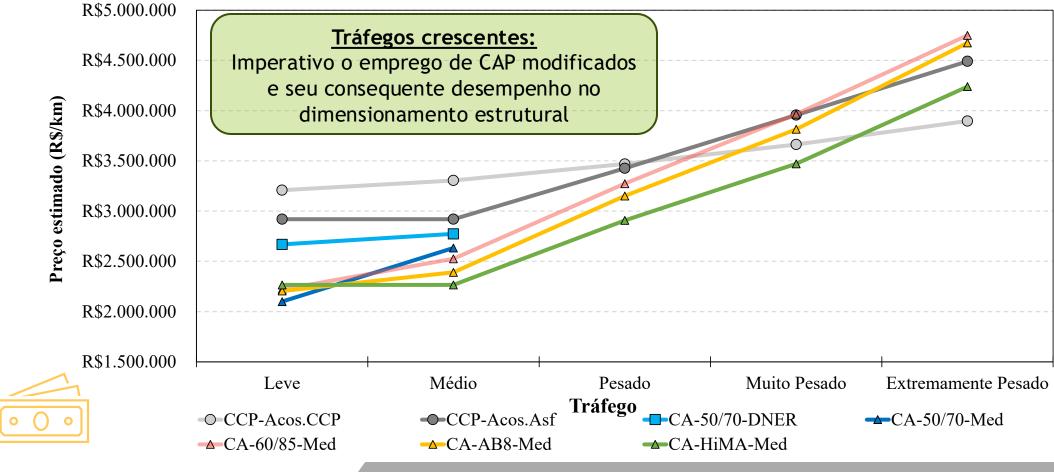

Estimativas dos valores de implantação das estruturas em pavimento rígido

Pavimentos Rígidos


Estimativas dos valores de implantação das estruturas em pavimento rígido

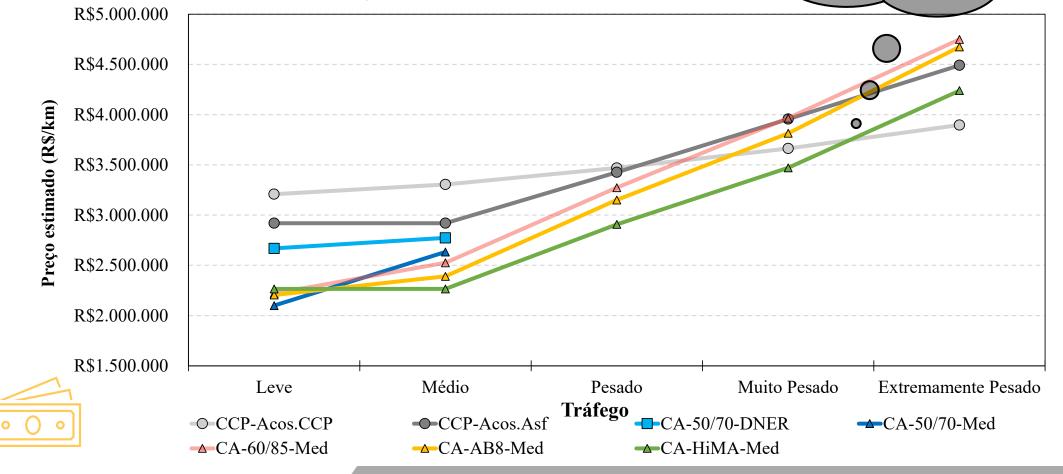

Pavimentos Asfálticos vs. Pavimentos Rígidos

Estimativas dos valores de implantação das estruturas avaliadas


Pavimentos Asfálticos vs. Pavimentos Rígidos

Estimativas dos valores de implantação das estruturas avaliadas

Pavimentos Asfálticos vs. Pavimentos Rígidos

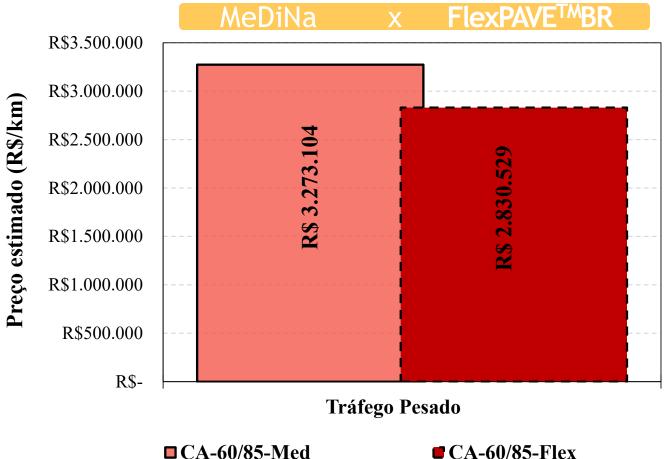

Estimativas dos valores de implantação das estruturas avaliadas

Pavimentos Asfálticos vs. Pavimentos Rígidos

Estimativas dos valores de implantação das estruturas avaliadas

Tráfego entre Muito Pesado e Extremamente Pesado: quando inicia a maior economia das alternativas em Pavimentos de CCP

Pavimentos Asfálticos vs. Pavimentos Rígidos


Síntese das diferenças aproximadas dos preços estimados em relação aos pavimentos rígidos com acostamento em concreto de cimento Portland

Faixa de Tráfego	CA-50/70-DNER	CA-50/70-Med	CA-60/85-Med	CA-AB8-Med	CA-HiMA-Med	CA-60/85-Flex	SR-HiMA	SR-INV-HiMA
Leve	-17%	-35%	-31%	-31%	-29%	-	-	-
Médio	-16%	-20%	-24%	-28%	-31%	-	-	-
Pesado	-	-	-6%	-9%	-16%	-18%	-	-
Muito Pesado	-	-	+8%	+4%	-5%	-6%	-17%	-12%
Extremamente Pesado	-	-	+22%	+20%	+9%	-	-20%	-11%

Avaliações complementares - Sensibilidade

Efeito da evolução da caracterização dos materiais e dos métodos de dimensionamento

Avaliações complementares - Sensibilidade consumos

Consumos ajustados x consumos SICRO

Tabela 16 – Consumos de cimento Portland considerando diferentes referências - Pavimento de concreto com fôrmas deslizantes.

Fonte	Tipo	Cimento Portland (Kg/m³)	
SICRO2	Sistema de custos	380	
SICRO	Sistema de custos	350	
DER/PR	Sistema de custos	355	
DER/SP	Sistema de custos	380	
SETOP/MG	Sistema de custos	350	
DNIT BR-080/DF	Licitação	350	
DNIT BR-424-316 / AL	Licitação	350	
DER/PR PR-170 / PRC-466	Licitação	355	Dos
SIE/SC SC-160	Licitação	400	
DNIT BR 285/SC	Obra	400	
DER/PR PR 180	Obra	367	
DER/PR PRC - 280	Obra	411	

Placa de CCP
Média geral = 371 kg/m³
SICRO = 350 kg/m³

Dosagens obras = $392,7 \text{ kg/m}^3$

Placa de

CCP

Avaliações complementares - Sensibilidade consumos

Consumos ajustados x Consumos SICRO

Tabela 22 – Consumo de ligante asfáltico para o concreto asfáltico com asfalto polímero

Fonte	Tipo	Teor de Ligante asfáltico (%)	Descrição	
SICRO	Sistema de custos	5,317	Faixa B	
SICRO	Sistema de custos	6,000	Faixa C	
DER/SP	Sistema de custos	4,8571	Faixa DER 19	
DER/SP	Sistema de custos	5,7741	Faixa DER 12,5	
SETOP/MG	Sistema de custos	5,882	Faixa C	
DER/PR PR-170 / PRC-466	Licitação	5,890	-	
DNIT PATO PR (UL Pato Branco)	Licitação	4,900	Faixa C	
Raffler (2023)	Dissertação de mestrado	5,0002	Faixa C	
Ramos (2023)	Dissertação de mestrado (traço obra)	4,830	DERSA - FX III - 60/85E A Faixa C	
Faccin (2018)	Dissertação de mestrado (traços de obras)	5,258³		

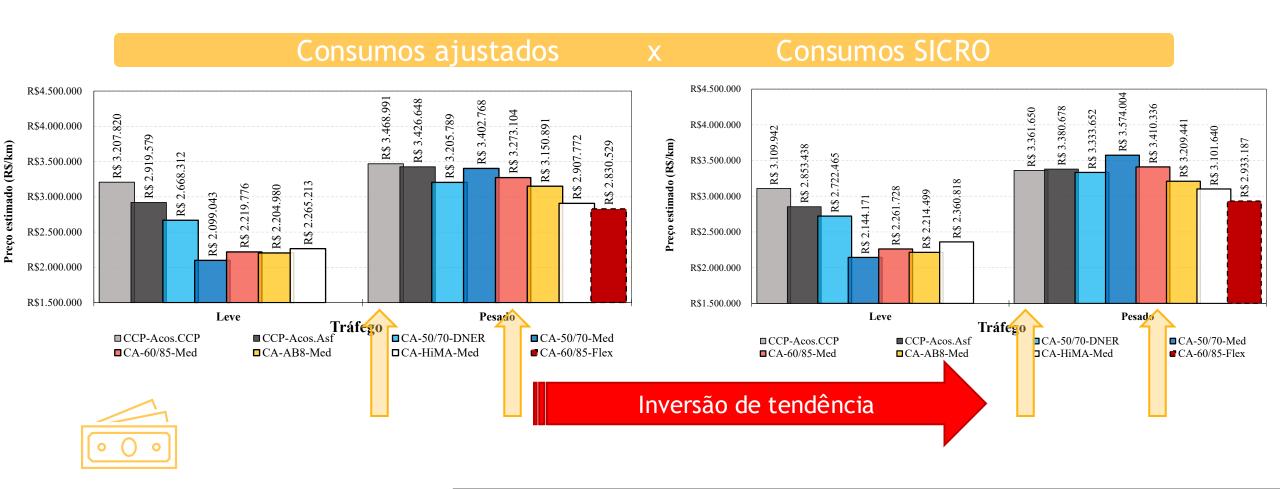
Polímero Média geral = 5,37%

SICRO = 6,0 % Dosagens = 5,03 %

Nota 1: Considerando massa específica 2400kg/m³

Nota 2: Dosagem Superpave

Nota 3: Média de 5 dosagens de obras no Estado do Rio Grande do Sul


Consumos SICRO por tonelada

C - MATERIAL		Quantidade	Unidade
M0028	Areia média	0,38400	m³
M0005	Brita 0	0,03200	m³
M0191	Brita 1	0.04800	m³
M0344	Cal hidratada - a granel	71,99160	kg
M1955	Cimento astáltico de petróleo com polímero - CAP 55/75-E	0,06000	t
M1941	M1941 Óleo tipo A1		I
M1103	M1103 Pedrisco		m³

CA com Polímero

Avaliações complementares - Sensibilidade consumos

Avaliações complementares - Sensibilidade consumos

Síntese das diferenças aproximadas dos preços estimados em relação aos pavimentos rígidos com acostamento em concreto de cimento Portland

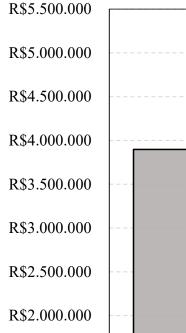
Orçamento consumos ajustados

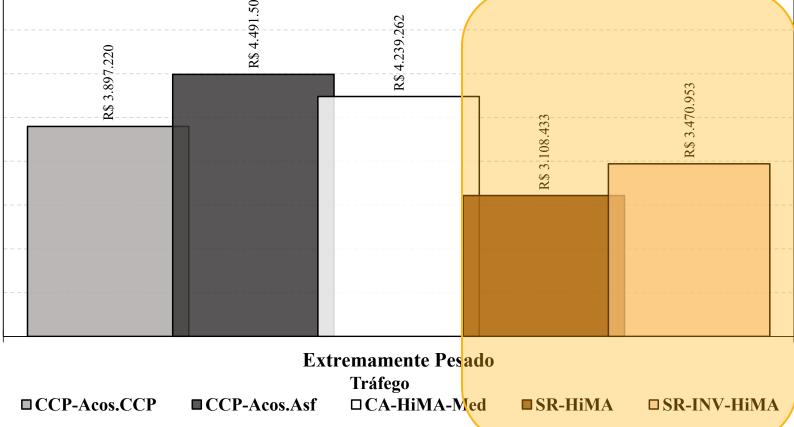
	Faixa de Tráfego	CA-50/70-DNER	CA-50/70-Med	CA-60/85-Med	CA-AB8-Med	CA-HiMA-Med	CA-60/85-Flex	SR-HiMA	SR-INV-HiMA
	Leve	-17%	-35%	-31%	-31%	-29%	-	-	-
	Médio	-16%	-20%	-24%	-28%	-31%		-	-
os	Pesado	-	-	-6%	-9 <mark>%</mark>	-16%	-18%	-	-
	Muito Pesado	-	-	+8%	+4%	-5%	-6%	-17%	-12%
	Extremamente Pesado	-	-	+22%	+20%	+9%	-	-20%	-11%

Orçamento SICRO

	N _{USACE}	CA-50/70-DNER	CA-50/70-Med	CA-60/85-Med	CA-AB8-Med	CA-HiMA-Med	CA-60/85-Flex	SR-HiMA	SR-INV-HiMA
	Leve	-12%	-31%	-27%	-29%	-24%	-	-	-
	Médio	-11%	-15%	-19%	-25%	-26%	-	-	-
0	Pesado	-	-	1%	- <mark>5</mark> %	<mark>-8</mark> %	-13%	-	-
	Muito Pesado	-	-	16 <mark>%</mark>	8%	5 <mark>%</mark>	0%	-15%	<mark>-6</mark> %
	Extremamente Pesado	-	-	31%	25 <mark>%</mark>	22 <mark>%</mark>	-	-19 %	- <mark>5</mark> %

Avaliações complementares


Qual a alternativa se mostrou mais vantajosa economicamente para o Tráfego Extremamente Pesado?



Avaliações complementares

Qual a alternativa se mostrou mais vantajosa economicamente para o Tráfego Extremamente Pesado?

R\$1.500.000

Discussões e Considerações Finais

Emissões de CO₂eq

- As emissões de GEE demonstraram que os pavimentos asfálticos emitem significativamente menos CO₂eq do que as soluções em pavimento rígido de concreto de cimento Portland;
- Exemplo: Para N = 5,0E+7 (Pesado)
 - Pavimentos de CCP
 - As emissões de CO₂eq nos pavimentos com CCP e CCR foram altamente impactadas pelas emissões da produção do cimento Portland
 - Respondeu por 66,8% das emissões totais
 - Emissão total de 1.136,07 tCO₂eq/km
 - Com mistura asfáltica (AMP 60/85)

- O ligante entregue na usina seria responsável por 14,9% das emissões totais do pavimento construído
- Emissão total de 486,39 tCO₂eq/km
- As emissões na usinagem da massa representaram 23,9% do total emitido

Discussões e Considerações Finais

Análises orçamentárias

- Para as condições de tráfego apresentadas
 - Implantação de pavimentos asfálticos foram sempre mais econômica até Tráfego Muito Pesado
- Para tráfego crescente...
 - Emprego de asfaltos modificados torna-se essencial à manutenção da competitividade das soluções em pavimentos asfálticos
- Para tráfego Extremamente Pesado
 - Emprego de soluções em CCP são menos onerosas que aquelas em pavimentos flexíveis
 - CONTUDO, não parecem ser as soluções mais econômicas entre todas as estudadas
 - PAVIMENTOS SEMIRRÍGIDOS merecem ser melhor investigados (dosagem, execução e desempenho)!

Discussões e Considerações Finais

Análises orçamentárias

- Os métodos empírico-mecanicistas, como o MeDiNa e o FlexPAVETM:
 - Permitem melhor avaliar o impacto dos ganhos de desempenho dos asfaltos modificados
 - Sendo fundamentais para uma análise mais realista dessas estruturas
- Os Sistemas de Custos (como o SICRO) <u>não são tabelas rígidas</u>!
 - SICRO é completo e atual...uma evolução considerável realizada pelo DNIT
 - Estudos comparativos de alternativas de pavimentação devem buscar ajustar os consumos de materiais conforme a realidade de cada região, a fim de propiciar uma análise mais realista das soluções.

Desafios e perspectivas

- Empregar do RAP e Misturas Mornas
- Aprofundar estudos com misturas e ligantes especiais
- Difundir os estudos para o emprego de asfaltos altamente modificados (para maiores tráfegos)
- Utilizar efetivamente métodos de dimensionamento empírico-mecanicistas nos projetos de pavimentação do país
- Desenvolver pesquisas com pavimentos semirrígidos e bases asfálticas para os tráfegos mais pesados
- Ampliar as análises considerando o ciclo de vida completo
 - Incorporando também a análise de emissões dos veículos
 - Considerando as restaurações das vias em todas as alternativas analisadas

Agradecemos pelo apoio às pesquisas

